Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.864
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Food Chem ; 447: 138989, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492297

RESUMO

Limonin is an intensely bitter and highly oxidized tetracyclic triterpenoid secondary metabolite, which is abundant in the Rutaceae and Meliaceae, especially in Citrus. In order to detect limonin content in complex substrates such as citrus and traditional Chinese medicine, monoclonal antibodies specifically recognizing limonin were prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was established. The median inhibition concentration (IC50) was 5.40 ng/mL and the linear range was 1.25-23.84 ng/mL. The average recoveries from citrus peel and pulp samples were 95.9%-118.8% and 77.5%-113.1%, respectively. Moreover, the contents of limonin in 6 citrus samples and 4 herbal samples were analyzed by icELISA and UPLC-MS, and the results of the two methods were consistent. This validation is sufficient to demonstrate that the developed immunoassay is applicable for the detection of limonin in citrus and herbal samples and has the advantage of high efficiency, sensitivity, and convenience.


Assuntos
Citrus , Limoninas , Anticorpos Monoclonais , Limoninas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Citrus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
Planta Med ; 90(4): 305-315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373705

RESUMO

Checkpoint blockade immunotherapy has revolutionized cancer treatment, with monoclonal antibodies targeting immune checkpoints, yielding promising clinical benefits. However, with the advent of resistance to immune checkpoint inhibitor treatment in clinical trials, developing next-generation antibodies with potentially increased efficacy is critical. Here, we aimed to generate a recombinant bispecific monoclonal antibody for dual inhibition of programmed cell death protein 1/programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 axes. The plant system was used as an alternative platform for bispecific monoclonal antibody production. Dual variable domain immunoglobulin atezolizumab × 2C8 is a plant-derived bispecific monoclonal antibody that combines both programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 blockade into a single molecule. Dual variable domain immunoglobulin atezolizumab × 2C8 was transiently expressed in Nicotiana benthamiana and the expression level was determined to be the highest after 4 days of infiltration. The size and assembly of the purified bispecific monoclonal antibody were determined, and its function was investigated in vitro and in vivo. The molecular structures of plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 are as expected, and it was mostly present as a monomer. The plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 showed in vitro binding to programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 proteins. The antitumor activity of plant-produced bispecific monoclonal antibody was tested in vivo by treating humanized Balb/c mice bearing a CT26 colorectal tumor. Plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 significantly inhibited tumor growth by reducing tumor volume and weight. Body weight changes indicated that the plant-produced bispecific monoclonal antibody was safe and tolerable. Overall, this proof of concept study demonstrated the viability of plants to produce functional plant-based bispecific immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias Colorretais , Neoplasias , Camundongos , Animais , Antígeno CTLA-4/uso terapêutico , Antígeno B7-H1/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico
3.
Health Technol Assess ; 28(4): 1-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343072

RESUMO

Background: Atopic dermatitis is a chronic relapsing inflammatory skin condition. One of the most common skin disorders in children, atopic dermatitis typically manifests before the age of 5 years, but it can develop at any age. Atopic dermatitis is characterised by dry, inflamed skin accompanied by intense itchiness (pruritus). Objectives: To appraise the clinical and cost effectiveness of abrocitinib, tralokinumab and upadacitinib within their marketing authorisations as alternative therapies for treating moderate-to-severe atopic dermatitis compared to systemic immunosuppressants (first-line ciclosporin A or second-line dupilumab and baricitinib). Data sources: Studies were identified from an existing systematic review (search date 2019) and update searches of electronic databases (MEDLINE, EMBASE, CENTRAL) to November 2021, from bibliographies of retrieved studies, clinical trial registers and evidence provided by the sponsoring companies of the treatments under review. Methods: A systematic review of the clinical effectiveness literature was carried out and a network meta-analysis undertaken for adults and adolescents at different steps of the treatment pathway. The primary outcome of interest was a combined response of Eczema Area and Severity Index 50 + Dermatology Life Quality Index ≥ 4; where this was consistently unavailable for a step in the pathway, an analysis of Eczema Area and Severity Index 75 was conducted. A de novo economic model was developed to assess cost effectiveness from the perspective of the National Health Service in England. The model structure was informed through systematic review of the economic literature and by consulting clinical experts. Effectiveness data were obtained from the network meta-analysis. Costs and utilities were obtained from the evidence provided by sponsoring companies and standard UK sources. Results: Network meta-analyses indicate that abrocitinib 200 mg and upadacitinib 30 mg may be more effective, and tralokinumab may be less effective than dupilumab and baricitinib as second-line systemic therapies. Abrocitinib 100 mg and upadacitinib 15 mg have a more similar effectiveness to dupilumab. Upadacitinib 30 and 15 mg are likely to be more effective than ciclosporin A as a first-line therapy. Upadacitinib 15 mg, abrocitinib 200 and 100 mg may be more effective than dupilumab in adolescents. The cost effectiveness of abrocitinib and upadacitinib for both doses is dependent on the subgroup of interest. Tralokinumab can be considered cost-effective as a second-line systemic therapy owing to greater cost savings per quality-adjusted life-year lost. Conclusions: The primary strength of the analysis of the three new drugs compared with current practice for each of the subpopulations is the consistent approach to the assessment of clinical and cost effectiveness. However, the conclusions are limited by the high uncertainty around the clinical effectiveness and lack of data for the primary outcome for comparisons with baricitinib and for the adolescent and adult first-line populations. Future work and limitations: The most significant limitation that Eczema Area and Severity Index 50 + Dermatology Life Quality Index ≥ 4 could not be obtained for the adolescent and adult first-line systemic treatment populations is due to a paucity of data for dupilumab and ciclosporin A. A comparison of the new drugs against one another in addition to current practice would be beneficial to provide a robust view on which treatments are the most cost-effective. Study registration: This study is registered as PROSPERO CRD42021266219. Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: 135138) and is published in full in Health Technology Assessment; Vol. 28, No. 4. See the NIHR Funding and Awards website for further award information.


Atopic dermatitis is one of the most common skin conditions in children but can also develop in adulthood. People with atopic dermatitis have dry, red (inflamed) skin that is also extremely itchy (pruritus). There is no cure for atopic dermatitis. Therapy starts with topical treatments that are applied to the skin, such as emollients. Severe forms of atopic dermatitis are often treated with systemic treatments, which are drugs that are provided as tablets or an injection. Ciclosporin A is often the first systemic therapy given. If atopic dermatitis does not get better with ciclosporin A, options available in the National Health Service are dupilumab and baricitinib. New therapies that have been evaluated in clinical trials for atopic dermatitis but have not been assessed for use in the National Health Service are abrocitinib, tralokinumab and upadacitinib. The aim of this project is to review the medical benefits, risks and value for money for the National Health Service of abrocitinib, tralokinumab and upadacitinib for the treatment of moderate-to-severe atopic dermatitis in a multiple technology appraisal. Our review found that: For children aged between 12 and 18 years, abrocitinib and a low dose of upadacitinib (15 mg) are good value for money for the National Health Service. For adults who need a first systemic treatment, upadacitinib is unlikely to be good value for money for the National Health Service. For adults who are still suffering from their atopic dermatitis after having a systemic treatment and need a different drug, upadacitinib 15 mg and tralokinumab could be good value for money for the National Health Service if they are used on their own. For adults who are still suffering from their atopic dermatitis after having a systemic treatment and need a different drug, but need to take it with steroid cream, abrocitinib 100 mg, upadacitinib 15 mg and tralokinumab could all be good value for money for the National Health Service.


Assuntos
Anticorpos Monoclonais , Azetidinas , Dermatite Atópica , Eczema , Compostos Heterocíclicos com 3 Anéis , Purinas , Pirazóis , Pirimidinas , Sulfonamidas , Criança , Adulto , Adolescente , Humanos , Pré-Escolar , Dermatite Atópica/tratamento farmacológico , Ciclosporina/uso terapêutico , Medicina Estatal , Resultado do Tratamento , Análise Custo-Benefício
4.
Br Dent J ; 236(4): 317-321, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38388611

RESUMO

Biologic drugs are drugs made by living organisms and the term is usually limited to monoclonal antibodies or receptors targeting specific cytokines or cells that have been developed in recent decades. These drugs have had an enormous impact on the management of cancers, including head and neck cancers, and immune-mediated inflammatory conditions, for example, rheumatoid arthritis and inflammatory bowel disease. General dental practitioners will routinely be managing patients who are on these medications for a wide range of systemic conditions. These drugs also have a limited role in the management of immune-mediated oral mucosal disease. In this article, we will introduce the range of biological agents and their systemic indications and then elaborate on their use in oral mucosal disease and the disadvantages associated with their use.


Assuntos
Artrite Reumatoide , Produtos Biológicos , Humanos , Odontólogos , Papel Profissional , Anticorpos Monoclonais/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Terapia Biológica
5.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(2): 101-119, 2024 Feb 12.
Artigo em Chinês | MEDLINE | ID: mdl-38309959

RESUMO

The methacholine challenge test (MCT) is a standard evaluation method of assessing airway hyperresponsiveness (AHR) and its severity, and has significant clinical value in the diagnosis and treatment of bronchial asthma. A consensus working group consisting of experts from the Pulmonary Function and Clinical Respiratory Physiology Committee of the Chinese Association of Chest Physicians, the Task Force for Pulmonary Function of the Chinese Thoracic Society, and the Pulmonary Function Group of Respiratory Branch of the Chinese Geriatric Society jointly developed this consensus. Based on the "Guidelines for Pulmonary Function-Bronchial Provocation Test" published in 2014, the issues encountered in its use, and recent developments, the group has updated the Standard technical specifications of methacholine chloride (methacholine) bronchial challenge test (2023). Through an extensive collection of expert opinions, literature reviews, questionnaire surveys, and multiple rounds of online and offline discussions, the consensus addressed the eleven core issues in MCT's clinical practice, including indications, contraindications, preparation of provocative agents, test procedures and methods, quality control, safety management, interpretation of results, and reporting standards. The aim was to provide clinical pulmonary function practitioners in healthcare institutions with the tools to optimize the use of this technique to guide clinical diagnosis and treatment.Summary of recommendationsQuestion 1: Who is suitable for conducting MCT? What are contraindications for performing MCT?Patients with atypical symptoms and a clinical suspicion of asthma, patients diagnosed with asthma requiring assessment of the severity of airway hyperresponsiveness, individuals with allergic rhinitis who are at risk of developing asthma, patients in need of evaluating the effectiveness of asthma treatment, individuals in occupations with high safety risks due to airway hyperresponsiveness, patients with chronic diseases prone to airway hyperresponsiveness, others requiring assessment of airway reactivity.Absolute contraindications: (1) Patients who are allergic to methacholine (MCh) or other parasympathomimetic drugs, with allergic reactions including rash, itching/swelling (especially of the face, tongue, and throat), severe dizziness, and dyspnea; (2) Patients with a history of life-threatening asthma attacks or those who have required mechanical ventilation for asthma attacks in the past three months; (3) Patients with moderate to severe impairment of baseline pulmonary function [Forced Expiratory Volume in one second (FEV1) less than 60% of the predicted value or FEV1<1.0 L]; (4) Severe urticaria; (5) Other situations inappropriate for forced vital capacity (FVC) measurement, such as myocardial infarction or stroke in the past three months, poorly controlled hypertension, aortic aneurysm, recent eye surgery, or increased intracranial pressure.Relative contraindications: (1) Moderate or more severe impairment of baseline lung function (FEV1%pred<70%), but individuals with FEV1%pred>60% may still be considered for MCT with strict observation and adequate preparation; (2) Experiencing asthma acute exacerbation; (3) Poor cooperation with baseline lung function tests that do not meet quality control requirements; (4) Recent respiratory tract infection (<4 weeks); (5) Pregnant or lactating women; (6) Patients currently using cholinesterase inhibitors (for the treatment of myasthenia gravis); (7) Patients who have previously experienced airway spasm during pulmonary function tests, with a significant decrease in FEV1 even without the inhalation of provocative.Question 2: How to prepare and store the challenge solution for MCT?Before use, the drug must be reconstituted and then diluted into various concentrations for provocation. The dilution concentration and steps for MCh vary depending on the inhalation method and provocation protocol used. It is important to follow specific steps. Typically, a specified amount of diluent is added to the methacholine reagent bottle for reconstitution, and the mixture is shaken until the solution becomes clear. The diluent is usually physiological saline, but saline with phenol (0.4%) can also be used. Phenol can reduce the possibility of bacterial contamination, and its presence does not interfere with the provocation test. After reconstitution, other concentrations of MCh solution are prepared using the same diluent, following the dilution steps, and then stored separately in sterile containers. Preparers should carefully verify and label the concentration and preparation time of the solution and complete a preparation record form. The reconstituted and diluted MCh solution is ready for immediate use without the need for freezing. It can be stored for two weeks if refrigerated (2-8 ℃). The reconstituted solution should not be stored directly in the nebulizer reservoir to prevent crystallization from blocking the capillary opening and affecting aerosol output. The temperature of the solution can affect the production of the nebulizer and cause airway spasms in the subject upon inhaling cold droplets. Thus, refrigerated solutions should be brought to room temperature before use.Question 3: What preparation is required for subjects prior to MCT?(1) Detailed medical history inquiry and exclusion of contraindications.(2) Inquiring about factors and medications that may affect airway reactivity and assessing compliance with medication washout requirements: When the goal is to evaluate the effectiveness of asthma treatment, bronchodilators other than those used for asthma treatment do not need to be discontinued. Antihistamines and cromolyn have no effect on MCT responses, and the effects of a single dose of inhaled corticosteroids and leukotriene modifiers are minimal, thus not requiring cessation before the test. For patients routinely using corticosteroids, whether to discontinue the medication depends on the objective of the test: if assisting in the diagnosis of asthma, differential diagnosis, aiding in step-down therapy for asthma, or exploring the effect of discontinuing anti-inflammatory treatment, corticosteroids should be stopped before the provocation test; if the patient is already diagnosed with asthma and the objective is to observe the level of airway reactivity under controlled medication conditions, then discontinuation is not necessary. Medications such as IgE monoclonal antibodies, IL-4Rα monoclonal antibodies, traditional Chinese medicine, and ethnic medicines may interfere with test results, and clinicians should decide whether to discontinue these based on the specific circumstances.(3) Explaining the test procedure and potential adverse reactions, and obtaining informed consent if necessary.Question 4: What are the methods of the MCT? And which ones are recommended in current clinical practice?Commonly used methods for MCT in clinical practice include the quantitative nebulization method (APS method), Forced Oscillalion method (Astograph method), 2-minute tidal breathing method (Cockcroft method), hand-held quantitative nebulization method (Yan method), and 5-breath method (Chai 5-breath method). The APS method allows for precise dosing of inhaled Methacholine, ensuring accurate and reliable results. The Astograph method, which uses respiratory resistance as an assessment indicator, is easy for subjects to perform and is the simplest operation. These two methods are currently the most commonly used clinical practice in China.Question 5: What are the steps involved in MCT?The MCT consists of the following four steps:(1) Baseline lung function test: After a 15-minute rest period, the subjects assumes a seated position and wear a nose clip for the measurement of pulmonary function indicators [such as FEV1 or respiratory resistance (Rrs)]. FEV1 should be measured at least three times according to spirometer quality control standards, ensuring that the best two measurements differ by less than 150 ml and recording the highest value as the baseline. Usually, if FEV1%pred is below 70%, proceeding with the challenge test is not suitable, and a bronchodilation test should be considered. However, if clinical assessment of airway reactivity is necessary and FEV1%pred is between 60% and 70%, the provocation test may still be conducted under close observation, ensuring the subject's safety. If FEV1%pred is below 60%, it is an absolute contraindication for MCT.(2) Inhalation of diluent and repeat lung function test for control values: the diluent, serving as a control for the inhaled MCh, usually does not significantly impact the subject's lung function. the higher one between baseline value and the post-dilution FEV1 is used as the reference for calculating the rate of FEV1 decline. If post-inhalation FEV1 decreases, there are usually three scenarios: ①If FEV1 decreases by less than 10% compared to the baseline, the test can proceed, continue the test and administer the first dose of MCh. ②If the FEV1 decreases by≥10% and<20%, indicating a heightened airway reactivity to the diluent, proceed with the lowest concentration (dose) of the provoking if FEV1%pred has not yet reached the contraindication criteria for the MCT. if FEV1%pred<60% and the risk of continuing the challenge test is considerable, it is advisable to switch to a bronchodilation test and indicate the change in the test results report. ③If FEV1 decreases by≥20%, it can be directly classified as a positive challenge test, and the test should be discontinued, with bronchodilators administered to alleviate airway obstruction.(3) Inhalation of MCh and repeat lung function test to assess decline: prepare a series of MCh concentrations, starting from the lowest and gradually increasing the inhaled concentration (dose) using different methods. Perform pulmonaryfunction tests at 30 seconds and 90 seconds after completing nebulization, with the number of measurements limited to 3-4 times. A complete Forced Vital Capacity (FVC) measurement is unnecessary during testing; only an acceptable FEV1 measurement is required. The interval between two consecutive concentrations (doses) generally should not exceed 3 minutes. If FEV1 declines by≥10% compared to the control value, reduce the increment of methacholine concentration (dose) and adjust the inhalation protocol accordingly. If FEV1 declines by≥20% or more compared to the control value or if the maximum concentration (amount) has been inhaled, the test should be stopped. After inhaling the MCh, close observation of the subject's response is necessary. If necessary, monitor blood oxygen saturation and auscultate lung breath sounds. The test should be promptly discontinued in case of noticeable clinical symptoms or signs.(4) Inhalation of bronchodilator and repeat lung function test to assess recovery: when the bronchial challenge test shows a positive response (FEV1 decline≥20%) or suspiciously positive, the subject should receive inhaled rapid-acting bronchodilators, such as short-acting beta-agonists (SABA) or short-acting muscarinic antagonists (SAMA). Suppose the subject exhibits obvious symptoms of breathlessness, wheezing, or typical asthma manifestations, and wheezing is audible in the lungs, even if the positive criteria are not met. In that case, the challenge test should be immediately stopped, and rapid-acting bronchodilators should be administered. Taking salbutamol as an example, inhale 200-400 µg (100 µg per puff, 2-4 puffs, as determined by the physician based on the subject's condition). Reassess pulmonary function after 5-10 minutes. If FEV1 recovers to within 10% of the baseline value, the test can be concluded. However, if there is no noticeable improvement (FEV1 decline still≥10%), record the symptoms and signs and repeat the bronchodilation procedure as mentioned earlier. Alternatively, add Ipratropium bromide (SAMA) or further administer nebulized bronchodilators and corticosteroids for intensified treatment while keeping the subject under observation until FEV1 recovers to within 90% of the baseline value before allowing the subject to leave.Question 6: What are the quality control requirements for the APS and Astograph MCT equipment?(1) APS Method Equipment Quality Control: The APS method for MCT uses a nebulizing inhalation device that requires standardized flowmeters, compressed air power source pressure and flow, and nebulizer aerosol output. Specific quality control methods are as follows:a. Flow and volume calibration of the quantitative nebulization device: Connect the flowmeter, an empty nebulization chamber, and a nebulization filter in sequence, attaching the compressed air source to the bottom of the chamber to ensure airtight connections. Then, attach a 3 L calibration syringe to the subject's breathing interface and simulate the flow during nebulization (typically low flow:<2 L/s) to calibrate the flow and volume. If calibration results exceed the acceptable range of the device's technical standards, investigate and address potential issues such as air leaks or increased resistance due to a damp filter, then recalibrate. Cleaning the flowmeter or replacing the filter can change the resistance in the breathing circuit, requiring re-calibration of the flow.b. Testing the compressed air power source: Regularly test the device, connecting the components as mentioned above. Then, block the opening of the nebulization device with a stopper or hand, start the compressed air power source, and test its pressure and flow. If the test results do not meet the technical standards, professional maintenance of the equipment may be required.c. Verification of aerosol output of the nebulization chamber: Regularly verify all nebulization chambers used in provocation tests. Steps include adding a certain amount of saline to the chamber, weighing and recording the chamber's weight (including saline), connecting the nebulizer to the quantitative nebulization device, setting the nebulization time, starting nebulization, then weighing and recording the post-nebulization weight. Calculate the unit time aerosol output using the formula [(weight before nebulization-weight after nebulization)/nebulization time]. Finally, set the nebulization plan for the provocation test based on the aerosol output, considering the MCh concentration, single inhalation nebulization duration, number of nebulization, and cumulative dose to ensure precise dosing of the inhaled MCh.(2) Astograph method equipment quality control: Astograph method equipment for MCT consists of a respiratory resistance monitoring device and a nebulization medication device. Perform zero-point calibration, volume calibration, impedance verification, and nebulization chamber checks daily before tests to ensure the resistance measurement system and nebulization system function properly. Calibration is needed every time the equipment is turned on, and more frequently if there are significant changes in environmental conditions.a. Zero-point calibration: Perform zero-point calibration before testing each subject. Ensure the nebulization chamber is properly installed and plugged with no air leaks.b. Volume calibration: Use a 3 L calibration syringe to calibrate the flow sensor at a low flow rate (approximately 1 L/s).c. Resistance verification: Connect low impedance tubes (1.9-2.2 cmH2O·L-1·s-1) and high impedance tubes (10.2-10.7 cmH2O·L-1·s-1) to the device interface for verification.d. Bypass check: Start the bypass check and record the bypass value; a value>150 ml/s is normal.e. Nebulization chamber check: Check each of the 12 nebulization chambers daily, especially those containing bronchodilators, to ensure normal spraying. The software can control each nebulization chamber to produce spray automatically for a preset duration (e.g., 2 seconds). Observe the formation of water droplets on the chamber walls, indicating normal spraying. If no nebulization occurs, check for incorrect connections or blockages.Question 7: How to set up and select the APS method in MCT?The software program of the aerosol provocation system in the quantitative nebulization method can independently set the nebulizer output, concentration of the methacholine agent, administration time, and number of administrations and combine these parameters to create the challenge test process. In principle, the concentration of the methacholine agent should increase from low to high, and the dose should increase from small to large. According to the standard, a 2-fold or 4-fold incremental challenge process is generally used. In clinical practice, the dose can be simplified for subjects with good baseline lung function and no history of wheezing, such as using a recommended 2-concentration, 5-step method (25 and 50 g/L) and (6.25 and 25 g/L). Suppose FEV1 decreases by more than 10% compared to the baseline during the test to ensure subject safety. In that case, the incremental dose of the methacholine agent can be reduced, and the inhalation program can be adjusted appropriately. If the subject's baseline lung function declines or has recent daytime or nighttime symptoms such as wheezing or chest tightness, a low concentration, low dose incremental process should be selected.Question 8: What are the precautions for the operation process of the Astograph method in MCT?(1) Test equipment: The Astograph method utilizes the forced oscillation technique, applying a sinusoidal oscillating pressure at the mouthpiece during calm breathing. Subjects inhale nebulized MCh of increasing concentrations while continuous monitoring of respiratory resistance (Rrs) plots the changes, assessing airway reactivity and sensitivity. The nebulization system employs jet nebulization technology, comprising a compressed air pump and 12 nebulization cups. The first cup contains saline, cups 2 to 11 contain increasing concentrations of MCh, and the 12th cup contains a bronchodilator solution.(2) Provocation process: Prepare 10 solutions of MCh provocant with gradually increasing concentrations.(3) Operational procedure: The oscillation frequency is usually set to 3 Hz (7 Hz for children) during the test. The subject breathes calmly, inhales saline solution nebulized first, and records the baseline resistance value (if the subject's baseline resistance value is higher than 10 cmH2O·L-1·s-1, the challenge test should not be performed). Then, the subject gradually inhales increasing concentrations of methacholine solution. Each concentration solution is inhaled for 1 minute, and the nebulization system automatically switches to the next concentration for inhalation according to the set time. Each nebulizer cup contains 2-3 ml of solution, the output is 0.15 ml/min, and each concentration is inhaled for 1 minute. The dose-response curve is recorded automatically. Subjects should breathe tidally during the test, avoiding deep breaths and swallowing. Continue until Rrs significantly rises to more than double the baseline value, or if the subject experiences notable respiratory symptoms or other discomfort, such as wheezing in both lungs upon auscultation. At this point, the inhalation of the provocant should be stopped and the subject switchs to inhaling a bronchodilator until Rrs returns to pre-provocation levels. If there is no significant increase in Rrs, stop the test after inhaling the highest concentration of MCh.Question 9: How to interpret the results of the MCT?The method chosen for the MCT determines the specific indicators used for interpretation. The most commonly used indicator is FEV1, although other parameters such as Peak Expiratory Flow (PEF) and Rrs can also be used to assess airway hyperresponsiveness.Qualitative judgment: The test results can be classified as positive, suspiciously positive, or negative, based on a combination of the judgment indicators and changes in the subject's symptoms. If FEV1 decreases by≥20% compared to the baseline value after not completely inhaling at the highest concentration, the result can be judged as positive for Methacholine bronchial challenge test. If the patient has obvious wheezing symptoms or wheezing is heard in both lungs, but the challenge test does not meet the positive criteria (the highest dose/concentration has been inhaled), and FEV1 decreases between 10% and 20% compared to the baseline level, the result can also be judged as positive. If FEV1 decreases between 15% and 20% compared to the baseline value without dyspnea or wheezing attacks, the result can be judged as suspiciously positive. Astograph method: If Rrs rises to 2 times or more of the baseline resistance before reaching the highest inhalation concentration, or if the subject's lungs have wheezing and severe coughing, the challenge test can be judged as positive. Regardless of the result of the Methacholine bronchial challenge test, factors that affect airway reactivity, such as drugs, seasons, climate, diurnal variations, and respiratory tract infections, should be excluded.Quantitative judgment: When using the APS method, the severity of airway hyperresponsiveness can be graded based on PD20-FEV1 or PC20-FEV1. Existing evidence suggests that PD20 shows good consistency when different nebulizers, inhalation times, and starting concentrations of MCh are used for bronchial provocation tests, whereas there is more variability with PC20. Therefore, PD20 is often recommended as the quantitative assessment indicator. The threshold value for PD20 with the APS method is 2.5 mg.The Astograph method often uses the minimum cumulative dose (Dmin value, in Units) to reflect airway sensitivity. Dmin is the minimum cumulative dose of MCh required to produce a linear increase in Rrs. A dose of 1 g/L of the drug concentration inhaled for 1-minute equals 1 unit. It's important to note that with the continuous increase in inhaled provocant concentration, the concept of cumulative dose in the Astograph method should not be directly compared to other methods. Most asthma patients have a Dmin<10 Units, according to Japanese guidelines. The Astograph method, having been used in China for over twenty years, suggests a high likelihood of asthma when Dmin≤6 Units, with a smaller Dmin value indicating a higher probability. When Dmin is between 6 and 10 Units, further differential diagnosis is advised to ascertain whether the condition is asthma.Precautions:A negative methacholine challenge test (MCT) does not entirely rule out asthma. The test may yield negative results due to the following reasons:(1) Prior use of medications that reduce airway responsiveness, such as ß2 agonists, anticholinergic drugs, antihistamines, leukotriene receptor antagonists, theophylline, corticosteroids, etc., and insufficient washout time.(2) Failure to meet quality control standards in terms of pressure, flow rate, particle size, and nebulization volume of the aerosol delivery device.(3) Poor subject cooperation leads to inadequate inhalation of the methacholine agent.(4) Some exercise-induced asthma patients may not be sensitive to direct bronchial challenge tests like the Methacholine challenge and require indirect bronchial challenge tests such as hyperventilation, cold air, or exercise challenge to induce a positive response.(5) A few cases of occupational asthma may only react to specific antigens or sensitizing agents, requiring specific allergen exposure to elicit a positive response.A positive MCT does not necessarily indicate asthma. Other conditions can also present with airway hyperresponsiveness and yield positive results in the challenge test, such as allergic rhinitis, chronic bronchitis, viral upper respiratory infections, allergic alveolitis, tropical eosinophilia, cystic fibrosis, sarcoidosis, bronchiectasis, acute respiratory distress syndrome, post-cardiopulmonary transplant, congestive heart failure, and more. Furthermore, factors like smoking, air pollution, or exercise before the test may also result in a positive bronchial challenge test.Question 10: What are the standardized requirements for the MCT report?The report should include: (1) basic information about the subject; (2) examination data and graphics: present baseline data, measurement data after the last two challenge doses or concentrations in tabular form, and the percentage of actual measured values compared to the baseline; flow-volume curve and volume-time curve before and after challenge test; dose-response curve: showing the threshold for positive challenge; (3) opinions and conclusions of the report: including the operator's opinions, quality rating of the examination, and review opinions of the reviewing physician.Question 11: What are the adverse reactions and safety measures of MCT?During the MCT, the subject needs to repeatedly breathe forcefully and inhale bronchial challenge agents, which may induce or exacerbate bronchospasm and contraction and may even cause life-threatening situations. Medical staff should be fully aware of the indications, contraindications, medication use procedures, and emergency response plans for the MCT.


Assuntos
Asma , Hipersensibilidade Respiratória , Rinite Alérgica , Criança , Humanos , Feminino , Idoso , Cloreto de Metacolina/farmacologia , Testes de Provocação Brônquica/métodos , Broncodilatadores , Sons Respiratórios , Lactação , Aerossóis e Gotículas Respiratórios , Asma/diagnóstico , Asma/terapia , Dispneia , Corticosteroides , Anticorpos Monoclonais , Antagonistas dos Receptores Histamínicos , Fenóis
6.
Am J Physiol Endocrinol Metab ; 326(3): E341-E350, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294697

RESUMO

Several clinical studies observed a surprising beneficial effect of obesity on enhancing immunotherapy responsiveness in patients with melanoma, highlighting an as-yet insufficiently understood relationship between metabolism and immunogenicity. Here, we demonstrate that the thiazolidinedione (TZD) rosiglitazone, a drug commonly used to treat diabetes by sequestering fatty acids in metabolically inert subcutaneous adipose tissue, improved sensitivity to anti-programmed cell death protein 1 (PD-1) treatment in YUMMER1.7 tumor-bearing mice, an initially immunotherapy-sensitive murine melanoma model. We observed a transition from high to intermediate PD-1 expression in tumor-infiltrating CD8+ T cells. Moreover, TZD inhibited PD-1 expression in mouse and human T cells treated in vitro. In addition to its direct impact on immune cells, TZD also decreased circulating insulin concentrations, while insulin induced T cell exhaustion in culture. In TZD-treated mice, we observed higher fatty acid concentrations in the tumor microenvironment, with fatty acids protecting against exhaustion in culture. Together, these data are consistent with an indirect mechanism of TZD inhibiting T cell exhaustion. Finally, we analyzed imaging data from patients with melanoma before and after anti-PD-1 treatment, confirming the beneficial effect of increased subcutaneous fat on anti-PD-1 responsiveness in patients. We also found that the expression of peroxisome proliferator-activated receptor gamma (PPARγ), the canonical activator of lipid uptake and adipogenesis activated by TZD, correlated with overall survival time. Taken together, these data identify a new adjuvant to enhance immunotherapy efficacy in YUMMER1.7 melanoma mice, and discover a new metabolism-based prognostic marker in human melanoma.NEW & NOTEWORTHY Zhang et al. demonstrate that the diabetes drug rosiglitazone improves the efficacy of immunotherapy in mouse melanoma. This effect is both direct and indirect: TZD directly reduces PD-1 expression in CD8+ T cells (i.e., reduces exhaustion), and indirectly reduces exhaustion by lowering insulin levels and increasing local fat. Finally, they demonstrate that hallmarks of TZD action (such as PPARγ expression and subcutaneous fat content) correlate with improved immunotherapy efficacy in humans with melanoma.


Assuntos
Diabetes Mellitus , Melanoma , Tiazolidinedionas , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Rosiglitazona , Receptor de Morte Celular Programada 1 , PPAR gama , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Anticorpos Monoclonais , Insulina , Ácidos Graxos , Microambiente Tumoral
7.
Fitoterapia ; 174: 105829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278422

RESUMO

Gardenia jasminoides Ellis, a plant widely used in traditional medicine, is known for its array of biological activities. A key bioactive compound, geniposide (GE), an iridoid glycoside, significantly contributes to the medicinal properties of the plant, with potential side effects. Thus, a reliable and efficient method for GE detection is required to ensure the quality of medicinal-grade G. jasminoides Ellis. This study developed such a method by first synthesizing GE-bovine serum albumin conjugates to function as immunizing agents in mice. This led to the production of a monoclonal antibody (mAb 3A6) against GE from the fusion of splenocytes from immunized mice with myeloma cells (P3U1), resulting in a hybridoma that produces mAb 3A6. Thereafter, we developed a mAb 3A6-based indirect competitive enzyme-linked immunosorbent assay (icELISA). The icELISA exhibited satisfactory sensitivity (0.391-12.5 µg/ml) and repeatability (coefficients of variation <10%). The accuracy of this method was validated through a spike-recovery assay (recovery of 101-112%). Furthermore, the icELISA was employed to determine the GE content in plant and Kampo medicine samples. The GE content positively correlated with those determined by high-performance liquid chromatography-ultraviolet. The proposed icELISA is rapid, cost-effective, and reliable for high-throughput GE detection in G. jasminoides Ellis, thereby contributing to the improved quality control and standardization of this valuable medicinal plant.


Assuntos
Gardenia , Medicina Kampo , Camundongos , Animais , Anticorpos Monoclonais , Estrutura Molecular , Iridoides
9.
Signal Transduct Target Ther ; 9(1): 13, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185721

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.


Assuntos
Doenças Cardiovasculares , Hipercolesterolemia , Humanos , Pró-Proteína Convertase 9/genética , Anticorpos Monoclonais/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Subtilisinas
10.
J Med Virol ; 96(2): e29430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285507

RESUMO

In immunology, cross-reaction between antigens and antibodies are commonly observed. Prior research has shown that various monoclonal antibodies (mAbs) can recognize a broad spectrum of epitopes related to influenza viruses. However, existing theories on cross-reactions fall short in explaining the phenomena observed. This study explored the interaction characteristics of H1-74 mAb with three peptides: two natural peptides, LVLWGIHHP and LPFQNI, derived from the hemagglutinin (HA) antigen of the H1N1 influenza virus, and one synthetic peptide, WPFQNY. Our findings indicate that the complementarity-determining region (CDR) of H1-74 mAb comprised five antigen-binding sites, containing eight key amino acid residues from the light chain variable region and 16 from the heavy chain variable region. These critical residues formed distinct hydrophobic or hydrophilic clusters and functional groups within the binding sites, facilitating interaction with antigen epitopes through hydrogen bonding, salt bridge formation, and π-π stacking. The study revealed that the formation of the antibody molecule led to the creation of binding groups and small units in the CDR, allowing the antibody to attach to a variety of antigen epitopes through diverse combinations of these small units and functional groups. This unique ability of the antibody to bind with antigen epitopes provides a new molecular basis for explaining the phenomenon of antibody cross-reaction.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A Subtipo H1N1 , Humanos , Sequência de Aminoácidos , Aminoácidos , Epitopos , Peptídeos
11.
Pediatr Blood Cancer ; 71(4): e30845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192171

RESUMO

BACKGROUND: Anti-GD2 antibodies are key components of treatment for high-risk neuroblastoma; however, they cause neuropathic pain. Yoga therapy may help reduce pain and distress associated with anti-GD2 therapy. PROCEDURE: Children 3 years of age or older with neuroblastoma participated in individualized yoga therapy while receiving the anti-GD2 antibody dinutuximab (DIN). Yoga therapy was deemed feasible if patients participated during 60% or more of DIN admissions. Patients and caregivers assessed pain/distress before and after yoga therapy with a distress thermometer (DT) and Wong-Baker FACES pain rating scale and completed questionnaires regarding satisfaction with yoga therapy. Therapy was deemed efficacious if there was a ≥1 point pain score change and reduction in distress after yoga. RESULTS: Eighteen patients were enrolled; 52 encounters (admissions for DIN) were evaluable. Ten of 18 were female, three of 18 were Hispanic, and 10/18 were White. Median age at enrollment was 5.5 years (range: 3-11). Yoga therapy was feasible in 39/52 (75%) encounters. Significant reductions in caregiver-reported pain and distress and reductions in patient-reported pain and distress after yoga therapy were reported. Twelve of 18 caregivers completed questionnaires: seven agreed/strongly agreed that yoga was valuable, and nine agreed/strongly agreed to continued participation in yoga. Thirty-four of 36 clinicians reported that they would recommend yoga therapy for other patients receiving DIN. CONCLUSIONS: Yoga therapy was feasible during DIN therapy and may be effective in reducing DIN-associated pain and distress. Future studies are needed to evaluate changes in opioid usage with the addition of yoga therapy during anti-GD2 antibody therapy.


Assuntos
Neuralgia , Neuroblastoma , Yoga , Criança , Humanos , Feminino , Pré-Escolar , Masculino , Neuroblastoma/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Neuralgia/induzido quimicamente
12.
Integr Cancer Ther ; 23: 15347354231225962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38240253

RESUMO

PURPOSE: Anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR mAb) is the key drug for RAS/BRAF V600E wild-type metastatic colorectal cancer (mCRC). However, anti-EGFR mAb-induced skin fissures often affect a patient's quality of life. Shiunko, a traditional Japanese topical herbal medicine, is used for burns and dermatitis and may potentially have wound-healing effects. Herein, we report cases of patients with mCRC who were treated with Shiunko for anti-EGFR mAb-induced skin fissure. METHODS: We retrospectively reviewed consecutive patients with mCRC who received an anti-EGFR mAb-containing regimen and were treated with Shiunko twice a day for skin fissures at the National Cancer Center Hospital East between March 2022 and December 2022. Skin fissures were assessed at baseline and at every visit until 28 days after Shiunko initiation according to CTCAE v5.0. RESULTS: Among the 11 patients, 5 patients were female; the median age was 61 (range, 43-79) years. The median treatment duration with anti-EGFR mAb before Shiunko initiation was 13.1 (range, 6-52) weeks. Skin moisturizer and topical steroids were applied for skin fissures in 11 and 5 patients, respectively. All patients had grade 2 skin fissures at baseline of Shiunko initiation. Two weeks after Shiunko initiation, complete recovery was noted in 4 patients and improvement to grade 1 was noted in 6 patients. There were no Shiunko-related adverse events. Ten patients continued anti-EGFR mAb treatment until disease progression, while 1 patient discontinued anti-EGFR mAb treatment due to severe eruptions. CONCLUSION: Shiunko could be a treatment option for anti-EGFR mAb-induced skin fissure. Further studies are warranted to investigate the efficacy and safety of Shiunko for anti-EGFR mAb-induced skin fissure.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/efeitos adversos , Cetuximab/efeitos adversos , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Receptores ErbB/metabolismo , Qualidade de Vida , Estudos Retrospectivos
13.
Phytother Res ; 38(2): 776-796, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050789

RESUMO

Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Proteínas de Checkpoint Imunológico , Ligantes , Imunoterapia , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Microambiente Tumoral
14.
J Nat Med ; 78(1): 160-168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804411

RESUMO

Saikosaponins are naturally occurring oleanane-type triterpenoids that are found in Bupleuri radix (root of Bupleurum falcatum) and exhibit a broad biological activity spectrum. Saikosaponin b2 (SSb2) is the main saikosaponin in Kampo medicine extracts and is a designated quality control marker for the same in the Japanese Pharmacopeia. Although some monoclonal antibodies (mAbs) against saikosaponins have been produced to evaluate the quality of Bupleuri radix and related products, anti-SSb2 mAbs have not been used to quantify SSb2 in Kampo medicines. To address this knowledge gap, we herein established a new hybridoma cell line secreting a highly specific anti-SSb2 mAb and developed an indirect competitive enzyme-linked immunosorbent assay (icELISA) based on this mAb for the detection of SSb2 in Bupleuri radix-containing Kampo medicines. The generated SSb2-recognized mAb exhibited high specificity to SSb2 in icELISA. The developed assay featured high sensitivity (linearity range = 1.95-125 ng/ml), accuracy, precision and reproducibility (coefficient of variation < 5%), and the thus determined SSb2 contents were strongly correlated with those obtained using liquid chromatograph-mass spectrometer. These results suggest that the anti-SSb2 mAb-based icELISA method can be used for the quality control and standardization of Kampo medicines containing Bupleuri radix.


Assuntos
Ácido Oleanólico , Saponinas , Anticorpos Monoclonais , Medicina Kampo , Reprodutibilidade dos Testes , Saponinas/análise , Controle de Qualidade , Ensaio de Imunoadsorção Enzimática
15.
J Mater Chem B ; 12(3): 691-700, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38126510

RESUMO

Herein, four haptens of niacin (Vitamin B3, VB3) were designed, and after a series of experiments, it was concluded that hapten D had the best immune effect. To avoid false positives in the detection of real samples, a monoclonal antibody (mAb) against VB3 was prepared by a matrix effect-enhanced mAb screening method. The concentration of the inhibition rate reaching 50% (IC50) was 603.41 ng mL-1 and the limit of detection (LOD) using an indirect enzyme-linked immunosorbent assay (ic-ELISA) was 54.89 ng mL-1. A lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles was established to detect the concentration of VB3 in compound vitamin B tablets and infant formulas, with a visual LOD of 5 µg mL-1. Using a handheld reader, the quantitative LOD was calculated to be 0.60 µg mL-1. The contents of the compound vitamin B tablets and infant formulas were also verified by liquid chromatography. Therefore, the LFIA developed in this study can be applied to the specific identification and rapid detection of niacin in nutritional dietary supplements, thus meeting the market's demand for efficient niacin detection methods.


Assuntos
Nanopartículas Metálicas , Niacina , Lactente , Humanos , Ouro/química , Nanopartículas Metálicas/química , Anticorpos Monoclonais , Suplementos Nutricionais , Vitaminas
16.
Front Immunol ; 14: 1278761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908347

RESUMO

Background: Durvalumab is an immune checkpoint Inhibitor (ICIs) that is used in the treatment of malignant tumors, such as lung cancer and melanoma. ICIs are associated with immune-related adverse events including autoimmune encephalitis, although both paraneoplastic phenomena and ICI treatment may lead to autoimmunity. Case presentation: We describe a 72-year old male patient with small-cell lung cancer, who during adjuvant treatment with Durvalumab developed GABABR1 and GAD65 antibodies and both diabetes and autoimmune limbic encephalitis. Because he was followed prospectively as part of a treatment study, we had access to repeated serum samples and cognitive assessments over time prior to developing encephalitis and diabetes, in addition to later assessments. A high titer of GABABR1 antibodies appeared early, while GAD65 antibodies appeared later with a lower titer in parallel with the development of diabetes. As he subsequently developed clinical signs of encephalitis, verified by EEG and brain MRI, he also had CSF GABABR1 antibodies. Durvalumab was discontinued and steroid treatment with subsequent plasmapheresis were started, resulting in reduction of both CSF and serum antibody levels. Clinical signs of encephalitis gradually improved. Conclusion: This case illustrates the importance of being aware of possible serious autoimmune adverse reactions, including neurological syndromes such as encephalitis, when treating patients with high risk of para-neoplasia with ICIs. In addition, the case shows the development of autoantibodies over time.


Assuntos
Diabetes Mellitus , Encefalite , Encefalite Límbica , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Idoso , Encefalite Límbica/induzido quimicamente , Encefalite Límbica/diagnóstico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Autoanticorpos , Encefalite/complicações , Ácido gama-Aminobutírico
17.
Sci Rep ; 13(1): 17607, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848636

RESUMO

Asthma is a chronic inflammatory condition that affects the lung airways. Chronic use of oral glucocorticoids in patients with severe asthma is associated with several adverse events (AEs). Biologics (omalizumab, benralizumab, mepolizumab, reslizumab, and dupilumab) have been developed as alternative therapies for the treatment of asthma. In this study, we aimed to evaluate the risk of anaphylactic reactions associated with these five biologics based on a large global database. We utilized individual case reports from the Uppsala Monitoring Center from January 1968 to December 29, 2019. A disproportionality analysis was performed over all drugs and monoclonal antibodies. Anaphylactic reactions were defined according to the "anaphylactic reaction" of the standardized MedDRA queries. Contrary to dupilumab, omalizumab, benralizumab, and mepolizumab demonstrated positive signals related to anaphylactic reactions over all drugs and monoclonal antibodies. Reslizumab, which represented only 315 cases of all AEs, requires more reports to determine its association with anaphylactic reactions. More anaphylactic reactions have been identified than are known, and most cases (96.2%) are reported to be serious. Our findings indicate that omalizumab, benralizumab, and mepolizumab for asthma treatment are associated with a high risk of anaphylactic reactions; thus, more careful monitoring in the post-administration period is recommended.


Assuntos
Anafilaxia , Antiasmáticos , Asma , Produtos Biológicos , Humanos , Omalizumab/efeitos adversos , Antiasmáticos/efeitos adversos , Produtos Biológicos/efeitos adversos , Farmacovigilância , Anafilaxia/induzido quimicamente , Anafilaxia/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico
18.
J Mater Chem B ; 11(39): 9467-9477, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782068

RESUMO

Stimuli-responsive cross-linked micelles (SCMs) are ideal nanocarriers for anti-cancer drugs. Compared with non-cross-linked micelles, SCMs exhibit superior structural stability. At the same time, the introduction of an environmentally sensitive crosslinker into a drug delivery system allows SCMs to respond to single or multiple stimuli in the tumor microenvironment, which can minimize drug leakage during the blood circulation process. In this study, curcumin (CUR) was modified as the hydrophobic core crosslinker by utilizing the bisphenol structure, and redox sensitive disulfide bonds were introduced to prepare the glutathione (GSH) stimulated responsive core crosslinker (abbreviated as N3-ss-CUR-ss-N3). In addition, amphiphilic polymer APEG-b-PBYP was prepared through the ring opening reaction, and reacted with the crosslinker through the "click" reaction. After being dispersed in the aqueous phase, core cross-linked nanoparticles (CCL NPs) were obtained. Finally, monoclonal antibody CD326 (mAb-CD326) was reduced and coupled to the hydrophilic chain ends to obtain the nanoparticles with surface modified antibodies (R-mAb-CD326@CCL NPs) for further enhancing targeted drug delivery. The structures of the polymer and crosslinker were characterized by 1H NMR, UV-Vis, FT-IR, and GPC. The morphology, size and stability of CCL NPs and R-mAb-CD326@CCL NPs were investigated by DLS and TEM. The in vitro drug release behavior of CCL NPs was also studied. The results showed that the CCL NPs exhibited reduction-responsiveness and were able to release the original drug CUR under 10 mM GSH conditions. Additionally, the CCL NPs exhibited excellent stability in both the simulated body fluid environment and organic solvents. Especially, R-mAb-CD326@CCL NPs can actively target tumor cells and showed better therapeutic efficacy in in vivo experiments with a tumor suppression rate of 78.7%. This work provides a new idea for the design of nano-drugs targeting breast cancer.


Assuntos
Curcumina , Neoplasias , Pró-Fármacos , Pró-Fármacos/química , Curcumina/química , Micelas , Anticorpos Monoclonais/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química , Neoplasias/tratamento farmacológico
19.
Rev Prat ; 73(7): 703-707, 2023 Sep.
Artigo em Francês | MEDLINE | ID: mdl-37796252

RESUMO

BIOTHERAPIES IN SEVERE CHILDHOOD ASTHMA. Asthma is a chronic inflammatory disease of the lower airways and is one of the most common chronic conditions during childhood. The management of severe asthmatic patients must be multidisciplinary, personalized, and holistic, especially in pediatrics. The therapeutic approach to asthmatic patients has evolved over the last years, targeting inflammatory cells and molecules. Such treatments mainly include biotherapies, and, in children, four monoclonal antibodies are presently available to treat severe asthma: omalizumab, mepolizumab, dupilumab and tezepelumab. These biotherapies have demonstrated short- and medium-term efficacy and safety in both adults and children.


BIOTHÉRAPIES DANS L'ASTHME SÉVÈRE DE L'ENFANT. L'asthme est une maladie inflammatoire chronique des voies aériennes inférieures, et une des affections chroniques les plus fréquentes chez l'enfant. La prise en charge de l'asthme sévère doit être personnalisée, multidisciplinaire et holistique, d'autant plus en pédiatrie. Les approches thérapeutiques ont évolué au cours de ces dernières années et, dans les formes sévères, ciblent directement les acteurs de la cascade inflammatoire. Ces traitements incluent notamment les biothérapies, et, chez l'enfant, quatre molécules sont actuellement disponibles : l'omalizumab, le mépolizumab, le dupilumab et le tézépélumab. Ces biothérapies ont montré une efficacité et une sécurité d'utilisation à court et moyen terme chez l'adulte comme chez l'enfant.


Assuntos
Asma , Adulto , Humanos , Criança , Asma/tratamento farmacológico , Terapia Biológica , Anticorpos Monoclonais/uso terapêutico
20.
Biologicals ; 84: 101713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793309

RESUMO

In the current transition to intensified upstream processing, the risks of adopting traditional single-use systems for high-titer, long-duration perfusion cultures, have thus far not been considered. This case study uses the Failure Modes and Effects Analysis (FMEA) method to evaluate the risks associated with implementing upstream single-use technology. The simulated model process was used to compare the risk level of single-use technology for a traditional fed-batch cell culture with that for perfusion culture, under the same annual protein production conditions. To provide a reasonable source of potential risk for FMEA, all single-use upstream operations for both fed-batch and perfusion processes were investigated using an analytical method developed to quantify the impact of process parameters and operating conditions on single-use system specifications and to ensure objectivity. Many of the risks and their levels, were similar in long-duration perfusion cultures and fed-batch cultures. However, differences were observed for high-risk components such as daily sampling and installation. The result of this analysis indicates that the reasons for risk are different for fed-batch cultures and perfusion cultures such as larger bioreactors in fed-batch and longer runs in perfusion, respectively. This risk assessment method could identify additional control measures and be part of a holistic contamination control strategy and help visualize their effectiveness.


Assuntos
Produtos Biológicos , Animais , Cricetinae , Reatores Biológicos , Técnicas de Cultura Celular por Lotes/métodos , Anticorpos Monoclonais , Perfusão , Cricetulus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA